Results¶
Metrics¶
Models that solve a single task¶
Regression (Reg)¶
Default dataset (Reg1)¶
Result¶
Arch |
GIoU |
RMSE |
---|---|---|
INet |
0.3838 |
25.9176 |
MobileNet |
0.3877 |
25.3727 |
VGG-16 |
0.0525 |
24.2184 |
Models that solve two tasks at the same time¶
2-Head-Predictor (2Head)¶
Default dataset (2Head1)¶
INet¶

##########################
Regression:
GIoU Loss: 0.64344555
RMSE Loss: 24.211178
Classification:
Accuracy: 0.49333333333333335
f1 score: 0.4762167417804296


MobileNet¶

##########################
Regression:
GIoU Loss: 1.4751697
RMSE Loss: 39.193527
Classification:
Accuracy: 0.7311111111111112
f1 score: 0.7224772507688828


VGG-16¶

##########################
Regression:
GIoU Loss: 1.5730777
RMSE Loss: 43.680496
Classification:
Accuracy: 0.17333333333333334
f1 score: 0.0590909090909091


Result:
Classification:
Arch |
Accuracy |
f1 |
---|---|---|
INet |
0.4933 |
0.4762 |
MobileNet |
0.7311 |
0.7793 |
VGG-16 |
0.1733 |
0.0591 |
Localization:
Arch |
GIoU |
RMSE |
---|---|---|
INet |
0.3566 |
24.2112 |
MobileNet |
-0.4751 |
39.1935 |
VGG-16 |
-0.5731 |
43.6805 |
Augmented dataset (2Head2)¶
INet¶

##########################
Regression:
GIoU Loss: 0.6958105
RMSE Loss: 21.909544
Classification:
Accuracy: 0.48444444444444446
f1 score: 0.4625029774807487


MobileNet¶

##########################
Regression:
GIoU Loss: 0.63962024
RMSE Loss: 20.518587
Classification:
Accuracy: 0.7555555555555555
f1 score: 0.7496034996537605


VGG-16¶

##########################
Regression:
GIoU Loss: 1.4623789
RMSE Loss: 38.729637
Classification:
Accuracy: 0.78
f1 score: 0.77794664790425


Result:
Classification:
Arch |
Accuracy |
f1 |
---|---|---|
INet |
0.4844 |
0.4625 |
MobileNet |
0.7555 |
0.7496 |
VGG-16 |
0.7800 |
0.7779 |
Localization:
Arch |
GIoU |
RMSE |
---|---|---|
INet |
0.3042 |
24.2111 |
MobileNet |
0.3604 |
20.5186 |
VGG-16 |
-0.4624 |
38.7296 |
Comparisons¶
(best Reg) MobileNet + (best Clf) MobileNet¶
Classification:
#########################
Accuracy: 0.5288888888888889
f1 score: 0.5097587081088926


Result:¶
2-S
: 2 Stage method2-S-1: 2 Stage without retraining (BBReg: MobileNet, Clf: MobileNet)
2-S-2: 2 Stage with clf retrained (BBReg: MobileNet, Clf: INet)
2-S-3: 2 Stage with clf retrained (BBReg: MobileNet, Clf: MobileNet)
2-Head
: 2-Head MobileNetClf3
: Classifier trained on original images
Classification:¶
Arch |
Accuracy |
f1 |
---|---|---|
Clf3 |
0.7844 |
0.7793 |
2-S-1 |
0.5289 |
0.5097 |
2-S-2 |
0.5289 |
0.5269 |
2-S-3 |
0.5666 |
0.5661 |
2-Head |
0.7555 |
0.7496 |
Localization:¶
Arch |
GIoU |
RMSE |
---|---|---|
Clf3 |
||
2-S-1 |
0.3877 |
25.3727 |
2-S-2 |
0.3877 |
25.3727 |
2-S-3 |
0.3877 |
25.3727 |
2-Head |
0.3604 |
20.5186 |
RaspberryPi¶
The trained models have been optimized to run on a RaspberryPi micro computer. To do so quantization techniques have been applied, those have been reviewed in the paper.
Inference tests¶
Original:¶
Model evaluation for: "independent":
Classification:
===================================
Accuracy: 0.916
f1 score: 0.9167668857681328
Localization:
===================================
GIoU: 0.43616188
RMSE: 17.347866
Testing inference for 5 samples for: "independent":
AVG inference time: 2.4359699999999997s.
Model evaluation for: "two-stage":
Classification:
===================================
Accuracy: 0.544
f1 score: 0.5522557272067077
Localization:
===================================
GIoU: 0.43616188
RMSE: 17.347866
Testing inference for 5 samples for: "two-stage":
AVG inference time: 3.467743s.
Model evaluation for: "single-stage":
Classification:
===================================
Accuracy: 0.92
f1 score: 0.9196824463343246
Localization:
===================================
GIoU: 0.62672853
RMSE: 19.672493
Testing inference for 5 samples for: "single-stage":
AVG inference time: 1.2404s.
TFLite:¶
Model evaluation for: "independent":
Classification:
===================================
Accuracy: 0.92
f1 score: 0.9209747544826291
Localization:
===================================
GIoU: 0.44598112
RMSE: 18.026241
Testing inference for 5 samples for: "independent":
AVG inference time: 1.324131s.
Model evaluation for: "two-stage":
Classification:
===================================
Accuracy: 0.52
f1 score: 0.5284798070186199
Localization:
===================================
GIoU: 0.44598112
RMSE: 18.026241
Testing inference for 5 samples for: "two-stage":
AVG inference time: 2.34496s.
Model evaluation for: "single-stage":
[====================] 100%
Classification:
===================================
Accuracy: 0.608
f1 score: 0.5803820077663839
Localization:
===================================
GIoU: 0.81673026
RMSE: 21.786606
Testing inference for 5 samples for: "single-stage":
AVG inference time: 0.731425s.