#include <DataSet.h>
|
| DataSet (const char *filePath, size_t inputCount, size_t outputCount) |
|
| DataSet (size_t inputCount, size_t outputCount) |
|
virtual void | PrepareDirectory (const char *filePath) |
|
◆ DataSet() [1/2]
DataSet::DataSet |
( |
const char * |
filePath, |
|
|
size_t |
inputCount, |
|
|
size_t |
outputCount |
|
) |
| |
|
inline |
regular constructor
- Parameters
-
filePath | path with dataset data files |
inputCount | number input elements |
outputCount | number output elements |
◆ DataSet() [2/2]
DataSet::DataSet |
( |
size_t |
inputCount, |
|
|
size_t |
outputCount |
|
) |
| |
|
inline |
initialization constructor, initializes required structures by given dimensions
- Parameters
-
inputCount | number input elements |
outputCount | number output elements |
◆ PrepareDirectory()
virtual void DataSet::PrepareDirectory |
( |
const char * |
filePath | ) |
|
|
inlinevirtual |
interface definition, does nothing here
- Parameters
-
Reimplemented in ImageDataSet.
◆ ImageDataSet
◆ batchSize
int DataSet::batchSize = 5 |
number of elements per batch
◆ eta
double DataSet::eta = 0.0051 |
◆ InputCount
size_t DataSet::InputCount |
◆ maxEpoch
int DataSet::maxEpoch = 1000 |
number of epochs while training
◆ OutputCount
size_t DataSet::OutputCount |
◆ stopThreshold
double DataSet::stopThreshold = 0.001 |
threshold for loss to prevent over-fitting
◆ Test
set to test after training
◆ Training
◆ Validation
set for validation of training
◆ verbose
bool DataSet::verbose = false |
use verbose output during fitting
The documentation for this class was generated from the following file: