philsupertramp/game-math
Loading...
Searching...
No Matches
Public Member Functions | Public Attributes | Friends | List of all members
DataSet Class Reference

#include <DataSet.h>

Inheritance diagram for DataSet:
ImageDataSet

Public Member Functions

 DataSet (const char *filePath, size_t inputCount, size_t outputCount)
 
 DataSet (size_t inputCount, size_t outputCount)
 
virtual void PrepareDirectory (const char *filePath)
 

Public Attributes

size_t InputCount
 number input elements More...
 
size_t OutputCount
 number output elements More...
 
Set Training
 set for training More...
 
Set Validation
 set for validation of training More...
 
Set Test
 set to test after training More...
 
int maxEpoch = 1000
 number of epochs while training More...
 
double stopThreshold = 0.001
 threshold for loss to prevent over-fitting More...
 
double eta = 0.0051
 learning rate More...
 
int batchSize = 5
 number of elements per batch More...
 
bool verbose = false
 use verbose output during fitting More...
 

Friends

class ImageDataSet
 

Detailed Description

dataset representation

Constructor & Destructor Documentation

◆ DataSet() [1/2]

DataSet::DataSet ( const char *  filePath,
size_t  inputCount,
size_t  outputCount 
)
inline

regular constructor

Parameters
filePathpath with dataset data files
inputCountnumber input elements
outputCountnumber output elements

◆ DataSet() [2/2]

DataSet::DataSet ( size_t  inputCount,
size_t  outputCount 
)
inline

initialization constructor, initializes required structures by given dimensions

Parameters
inputCountnumber input elements
outputCountnumber output elements

Member Function Documentation

◆ PrepareDirectory()

virtual void DataSet::PrepareDirectory ( const char *  filePath)
inlinevirtual

interface definition, does nothing here

Parameters
filePath

Reimplemented in ImageDataSet.

Friends And Related Function Documentation

◆ ImageDataSet

friend class ImageDataSet
friend

Member Data Documentation

◆ batchSize

int DataSet::batchSize = 5

number of elements per batch

◆ eta

double DataSet::eta = 0.0051

learning rate

◆ InputCount

size_t DataSet::InputCount

number input elements

◆ maxEpoch

int DataSet::maxEpoch = 1000

number of epochs while training

◆ OutputCount

size_t DataSet::OutputCount

number output elements

◆ stopThreshold

double DataSet::stopThreshold = 0.001

threshold for loss to prevent over-fitting

◆ Test

Set DataSet::Test

set to test after training

◆ Training

Set DataSet::Training

set for training

◆ Validation

Set DataSet::Validation

set for validation of training

◆ verbose

bool DataSet::verbose = false

use verbose output during fitting


The documentation for this class was generated from the following file: