philsupertramp/game-math
Loading...
Searching...
No Matches
ds/preprocessing/TestScaler.cpp

This is an example on how to use the Scaler classes

#include "../../Test.h"
class StandardScalerTestCase : public Test
{
bool TestConstructor() {
auto clf = StandardScaler();
return true;
}
bool TestFit() {
Matrix<double> input_data(
{ { 2, 1 }, { 4, 1 }, { 2, 3 }, { 4, 3 }, { 8, 6 }, { 10, 8 }, { 2, 12 }, { 2, 14 }, { 4, 14 } });
Matrix<double> labels({ { 0 }, { 0 }, { 0 }, { 0 }, { 1 }, { 1 }, { 2 }, { 2 }, { 2 } });
Matrix<double> expected_weights = { { 38.0 / 9.0, 62.0 / 9.0 } };
Matrix<double> expected_sds = { { 2.739739556875101, 5.043024763515652 } };
auto clf = StandardScaler();
clf.fit(input_data, labels);
AssertEqual(clf.means, expected_weights);
AssertEqual(clf.std_deviations, expected_sds);
clf = StandardScaler(false);
clf.fit(input_data, labels);
AssertEqual(clf.means, zeros(1, input_data.columns()));
AssertEqual(clf.std_deviations, expected_sds);
clf = StandardScaler(true, false);
clf.fit(input_data, labels);
AssertEqual(clf.means, expected_weights);
AssertEqual(clf.std_deviations, ones(1, input_data.columns()));
clf = StandardScaler(false, false);
clf.fit(input_data, labels);
AssertEqual(clf.means, zeros(1, input_data.columns()));
AssertEqual(clf.std_deviations, ones(1, input_data.columns()));
return true;
}
bool TestTransform() {
Matrix<double> input_data(
{ { 2, 1 }, { 4, 1 }, { 2, 3 }, { 4, 3 }, { 8, 6 }, { 10, 8 }, { 2, 12 }, { 2, 14 }, { 4, 14 } });
Matrix<double> labels({ { 0 }, { 0 }, { 0 }, { 0 }, { 1 }, { 1 }, { 2 }, { 2 }, { 2 } });
Matrix<double> test_data({ { 1, 0 }, { 8, 8 }, { 0, 1 }, { 3, 16 } });
Matrix<double> expected_input({ { -0.81110711, -1.16772952 },
{ -0.08111071, -1.16772952 },
{ -0.81110711, -0.77114214 },
{ -0.08111071, -0.77114214 },
{ 1.37888208, -0.17626106 },
{ 2.10887847, 0.22032632 },
{ -0.81110711, 1.01350109 },
{ -0.81110711, 1.41008848 },
{ -0.08111071, 1.41008848 } });
Matrix<double> expected_test_data = { { -1.1761053031980284, -1.3660232126416183 },
{ 1.3788820796114813, 0.2203263246196158 },
{ -1.541103500742244, -1.1677295204839642 },
{ -0.446108908109597, 1.8066758618808498 } };
auto clf = StandardScaler();
clf.fit(input_data, labels);
auto transformations = clf.transform(test_data);
AssertEqual(transformations, expected_test_data);
AssertEqual(clf.transform(input_data), expected_input);
return true;
}
public:
virtual void run() {
TestConstructor();
TestFit();
TestTransform();
}
};
class MinMaxScalerTestCase : public Test
{
bool TestConstructor() {
auto clf = StandardScaler();
return true;
}
bool TestFit() {
Matrix<double> input_data(
{ { 2, 1 }, { 4, 1 }, { 2, 3 }, { 4, 3 }, { 8, 6 }, { 10, 8 }, { 2, 12 }, { 2, 14 }, { 4, 14 } });
Matrix<double> labels({ { 0 }, { 0 }, { 0 }, { 0 }, { 1 }, { 1 }, { 2 }, { 2 }, { 2 } });
auto clf = MinMaxScaler();
clf.fit(input_data, labels);
return true;
}
bool TestTransform() {
Matrix<double> input_data(
{ { 2, 1 }, { 4, 1 }, { 2, 3 }, { 4, 3 }, { 8, 6 }, { 10, 8 }, { 2, 12 }, { 2, 14 }, { 4, 14 } });
Matrix<double> labels({ { 0 }, { 0 }, { 0 }, { 0 }, { 1 }, { 1 }, { 2 }, { 2 }, { 2 } });
Matrix<double> test_data({ { 1, 0 }, { 8, 8 }, { 0, 1 }, { 3, 16 } });
Matrix<double> expected_input({
{ 0., 0. },
{ 0.25, 0. },
{ 0.0, 0.1538461538461539 },
{ 0.25, 0.1538461538461539 },
{ 0.75, 0.3846153846153846 },
{ 1.0, 0.5384615384615385 },
{ 0.0, 0.8461538461538463 },
{ 0.0, 1.0000000000000002 },
{ 0.25, 1.0000000000000002 },
});
Matrix<double> expected_test_data = {
{ 0.125, 0.0 },
{ 1.0, 0.5 },
{ 0.0, 0.0625 },
{ 0.375, 1.0 },
};
auto clf = MinMaxScaler();
clf.fit(input_data, labels);
auto transformations = clf.transform(test_data);
std::cout << transformations << std::endl;
AssertEqual(transformations, expected_test_data);
AssertEqual(clf.transform(input_data), expected_input);
return true;
}
public:
virtual void run() {
TestConstructor();
TestFit();
TestTransform();
}
};
int main() {
StandardScalerTestCase().run();
MinMaxScalerTestCase().run();
return 0;
}
Definition: Matrix.h:42
Definition: Scaler.h:85
Definition: Scaler.h:44
Matrix< double > ones(size_t rows, size_t columns=1, size_t elements=1)
Matrix< double > zeros(size_t rows, size_t columns, size_t elements=1)