philsupertramp/game-math
|
#include <Spline.h>
Public Member Functions | |
Spline (const Matrix< double > &X, const Matrix< double > &Y) | |
Spline (const Matrix< double > &X, const Matrix< double > &Y, const Matrix< double > &Z) | |
double | eval_spline_j (double x_act, size_t j, const Matrix< double > &mi) |
Matrix< double > | curv (double h) |
void | SetAbstractionValue (const Matrix< double > &tx, const Matrix< double > &ty) |
Matrix< double > | operator() (const Matrix< double > &xi) |
Matrix< double > | calculateEquidistant (const Matrix< double > &xi) |
Private Attributes | |
Matrix< double > | XI |
x-axis support values More... | |
Matrix< double > | YI |
y-axis support values More... | |
Matrix< double > | ZI |
z-axis support values More... | |
Matrix< double > | Tx |
t-Values for x More... | |
Matrix< double > | Ty |
t-Values for y More... | |
bool | isEquidistant = true |
flag to signalize that support values do not lie equidistant to each other More... | |
Spline implementation.
Capable of 1D Natural-Cubic-Splines as well as 2/3D Interpolation using approximations.
Default constructor
X | x-axis support values |
Y | y-axis support values |
|
inline |
3D approximation using a b=2 b-spline
X | x-axis evaluation values |
Y | y-axis evaluation values |
Z | z-axis evaluation values |
Calculates natural cubic spline for given input xi
xi | input values |
|
inline |
Calculates second derivative on given knot-points
h | distance between points |
|
inline |
Evaluation of cubic polynomial s_j
Evaluates the spline for given values
xi | input values |
|
inline |
Setter for abstraction values t
tx | x-axis |
ty | y-axis |
|
private |
flag to signalize that support values do not lie equidistant to each other
|
private |
t-Values for x
|
private |
t-Values for y
|
private |
x-axis support values
|
private |
y-axis support values
|
private |
z-axis support values